The first time you see matrices, if someone asked you how you multiply two matrices together, your first idea might be to multiply every element of the first matrix by the element in the same position of the corresponding matrix, analogous to the way you add matrices.

But that’s not usually how we multiply matrices. That notion of multiplication hardly involves the matrix structure; it treats the matrix as an ordered container of numbers, but not as a way of representing a linear transformation. Once you have a little experience with linear algebra, the customary way of multiplying matrices seems natural, and the way that may have seemed natural at first glance seems kinda strange.

Suppose you want to multiply two 2 × 2 matrices together. How many multiplication operations does it take? Apparently 8, and yet in 1969 Volker Strassen discovered that he could do it with 7 multiplications.

The obvious way to multiply two *n* × *n* matrices takes *n*³ operations: each entry in the product is the inner product of a row from the first matrix and a column from the second matrix. That amounts to *n*² inner products, each requiring *n* multiplications.